skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Millstone, Samuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We explore the relation between stellar surface density and gas surface density (the star–gas, or S-G, correlation) in a 20,000Msimulation from the STAR FORmation in Gaseous Environments (starforge) project. We create synthetic observations based on the Spitzer and Herschel telescopes by modeling contamination by active galactic nuclei, smoothing based on angular resolution, cropping the field of view, and removing close neighbors and low-mass sources. We extract S-G properties such as the dense gas-mass fraction, the Class II:I ratio, and the S-G correlation (ΣYSOgas) from the simulation and compare them to observations of giant molecular clouds, young clusters, and star-forming regions, as well as to analytical models. We find that the simulation reproduces trends in the counts of young stellar objects and the median slope of the S-G correlation. This implies that the S-G correlation is not simply the result of observational biases, but is in fact a real effect. However, other statistics, such as the Class II:I ratio and dense gas-mass fraction, do not always match observed equivalents in nearby clouds. This motivates further observations covering the full simulation age range and more realistic modeling of cloud formation. 
    more » « less
  2. Recent years have seen a surge of interest in the community studying the effect of ultraviolet radiation environment, predominantly set by OB stars, on protoplanetary disc evolution and planet formation. This is important because a significant fraction of planetary systems, potentially including our own, formed in close proximity to OB stars. This is a rapidly developing field, with a broad range of observations across many regions recently obtained or recently scheduled. In this paper, stimulated by a series of workshops on the topic, we take stock of the current and upcoming observations. We discuss how the community can build on this recent success with future observations to make progress in answering the big questions of the field, with the broad goal of disentangling how external photoevaporation contributes to shaping the observed (exo)planet population. Both existing and future instruments offer numerous opportunities to make progress towards this goal. 
    more » « less
    Free, publicly-accessible full text available May 2, 2026